The generator matrix

 1  0  1  1  1  1  1 X+3  1  1  1 2X  1  1  1  0  1  1  1 2X  1  1  1 X+3  1  1  1  1  1  1  6 X+6  1  1  1 2X+6  1  1  1  1  6  1  1  X  1  1  1 2X+6  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  0  6 X+6  X 2X 2X+6  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1
 0  1 2X+4  8 X+1 X+3 X+2  1 2X  4 2X+8  1  0 2X+4  8  1 2X X+1 X+2  1 X+3  4 2X+8  1  6 X+6 2X+7 X+7  5 2X+5  1  1 2X+6  7 X+5  1  6 2X+7  5 X+6  1 X+7 X+5  1 2X+3  7 2X+5  1  0  6 X+3 2X+4 2X+7 X+7  8  5 X+2 X+6 X+1 X+5 2X+6 2X+3  4  7 2X+8 2X+5  1  1  1  1  1  1  3  3  X  X 2X 2X+3  3 2X+1  2  X 2X+6 2X+1 X+4 X+4  2 X+8  1  1 2X+1 X+1
 0  0  3  0  6  3  6  6  6  0  3  3  6  6  3  6  3  0  0  0  0  3  6  3  3  6  0  3  6  0  3  0  0  6  3  6  6  6  3  3  6  0  0  0  0  3  6  3  3  0  6  0  3  6  6  0  3  0  3  6  3  6  6  0  0  3  3  0  6  3  6  0  0  6  3  6  0  3  3  3  0  0  6  6  0  6  6  3  3  0  0  3

generates a code of length 92 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 181.

Homogenous weight enumerator: w(x)=1x^0+216x^181+72x^182+264x^183+1260x^184+72x^185+132x^186+72x^187+18x^188+72x^190+2x^195+2x^198+2x^213+2x^222

The gray image is a code over GF(3) with n=828, k=7 and d=543.
This code was found by Heurico 1.16 in 0.444 seconds.